A Stable and Convergent Non-Standard Finite Difference Method for Fractional Black-Scholes Model of Digital Put Option ‎Pricing
کد مقاله : 1016-FEMATH5-FULL (R1)
نویسندگان
رباب کلانتری *1، صداقت شهمراد2
1تهران خیابان آزادی بلوار استاد معین کوچه فردوس پلاک 5 واحد 3
2هیئت علمی دانشگاه تبریز
چکیده مقاله
Firstly, we introduce the mathematical model of digital put‎
option pricing under the Fractional Black - Scholes model‎.
‎Following this‎, ‎we introduce the the digital option ‎pricing condition in Fractional Black - Scholes , ‎then ‎we ‎explain‎
‎non - standard ‎Finite ‎difference ‎method and non - standard ‎‎Gr "{u} nwald Letnikov approximation and use these approximations for Stock and time ‎fractional‎ term in ‎Fractional Black - ‎S‎choles ‎model to reach a fractional non - standard finite‎
‎difference problem‎. ‎We show that the proposed fractional non - standard finite‎
‎difference‎ scheme‎
‎is stable and convergent. Continuously, we show ‎ that non - standard finite‎
‎difference (NSFD) method is more stable and more convergence than standard finite difference method in Fractional Black - Scholes model as numerical. ‎Uniqueness of the approximate solution is‎
‎also proved‎. ‎We also show that numerical results satisfy the‎
‎physical conditions of digital put option pricing under the‎ Fractional Black - ‎Scholes‎ (FBS)
‎model.‎
کلیدواژه ها
Fractional Differential Equation; Digital Option Pricing;‎ ‎Non-Standard Finite Difference Method; Interpolation Method‎.
وضعیت: پذیرفته شده برای ارائه شفاهی
login